Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2010 Feb 5;285(6):4130-42. doi: 10.1074/jbc.M109.054718. Epub 2009 Dec 2.

Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels.

Author information

  • 1Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milan, Italy.

Erratum in

  • J Biol Chem. 2010 Apr 23;285(17):13314.

Abstract

Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their "canonical" gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na(+) channels, the three human ether-à-go-go (hERG)-related K(+) channels, and two human Shaker-related K(+) channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na(+) channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na(+) channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K(+) channels at concentrations well above the IC(50) value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs.

PMID:
19955179
[PubMed - indexed for MEDLINE]
PMCID:
PMC2823553
Free PMC Article

Images from this publication.See all images (7)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk