Format

Send to

Choose Destination
See comment in PubMed Commons below
Heredity (Edinb). 2010 Sep;105(3):299-308. doi: 10.1038/hdy.2009.162. Epub 2009 Dec 2.

Non-additive gene regulation in a citrus allotetraploid somatic hybrid between C. reticulata Blanco and C. limon (L.) Burm.

Author information

  • 1Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UPR amélioration génétique des espèces à multiplication végétative, Montpellier, France.

Abstract

Polyploid plants often produce new phenotypes, exceeding the range of variability existing in the diploid gene pool. Several hundred citrus allotetraploid hybrids have been created by somatic hybridization. These genotypes are interesting models to study the immediate effects of allopolyploidization on the regulation of gene expression. Here, we report genome-wide gene expression analysis in fruit pulp of a Citrus interspecific somatic allotetraploid between C. reticulata cv 'Willowleaf mandarin'+C. limon cv 'Eureka lemon', using a Citrus 20K cDNA microarray. Around 4% transcriptome divergence was observed between the two parental species, and 212 and 160 genes were more highly expressed in C. reticulata and C. limon, respectively. Differential expression of certain genes was confirmed by quantitative real-time RT-PCR. A global downregulation of the allotetraploid hybrid transcriptome was observed, as compared with a theoretical mid parent, for the genes displaying interspecific expression divergence between C. reticulata and C. limon. The genes underexpressed in mandarin, as compared with lemon, were also systematically repressed in the allotetraploid. When genes were overexpressed in C. reticulata compared with C. limon, the distribution of allotetraploid gene expression was far more balanced. Cluster analysis on the basis of gene expression clearly indicated the hybrid was much closer to C. reticulata than to C. limon. These results suggest there is a global dominance of the mandarin transcriptome, in consistence with our previous studies on aromatic compounds and proteomics. Interspecific differentiation of gene expression and non-additive gene regulation involved various biological pathways and different cellular components.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk