Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plast Reconstr Surg. 2009 Dec;124(6):1840-8. doi: 10.1097/PRS.0b013e3181bf806c.

Force-induced craniosynostosis in the murine sagittal suture.

Author information

  • 1Craniofacial Anomalies Program, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5340, USA.

Abstract

BACKGROUND:

The cause of nonsyndromic craniosynostosis remains elusive. Although compressive forces have been implicated in premature suture fusion, conclusive evidence of force-induced craniosynostosis is lacking. The purpose of this study was to determine whether cyclical loading of the murine calvaria could induce suture fusion.

METHODS:

Calvarial coupons from postnatal day-21, B6CBA, wild-type mice (n = 18) were harvested and cultured. A custom appliance capable of delivering controlled, cyclical, compressive loads was applied perpendicular to the sagittal suture within the coupon in vitro. Nine coupons were subjected to 0.3 g of force for 30 minutes each day for a total of 14 days. A control group of nine coupons was clamped in the appliance without loading. Analysis of suture phenotype was performed using alkaline phosphatase and hematoxylin and eosin staining techniques and in situ hybridization analysis using bone sialoprotein.

RESULTS:

Control group sagittal sutures-which normally remain patent in mice-showed their customary histologic appearance. In contradistinction, sagittal sutures subjected to cyclic loading showed histologic evidence of premature fusion (craniosynostosis). In addition, alkaline phosphatase activity and bone sialoprotein expression were observed to be increased in the experimental group when compared with matched controls.

CONCLUSIONS:

An in vitro model of force-induced craniosynostosis has been devised. Premature fusion of the murine sagittal suture was induced with the application of controlled, cyclical, compressive loads. These results implicate abnormal forces in the development of nonsyndromic craniosynostosis, which supports our global hypothesis that epigenetic phenomena play a crucial role in the pathogenesis of craniosynostosis.

PMID:
19952640
[PubMed - indexed for MEDLINE]
PMCID:
PMC3381905
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins Icon for PubMed Central
    Loading ...
    Write to the Help Desk