Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Transl Med. 2009 Nov 25;7:98. doi: 10.1186/1479-5876-7-98.

Let-7 microRNAs are developmentally regulated in circulating human erythroid cells.

Author information

  • 1Molecular Medicine Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. nohseung@niddk.nih.gov

Abstract

BACKGROUND:

MicroRNAs are approximately 22nt-long small non-coding RNAs that negatively regulate protein expression through mRNA degradation or translational repression in eukaryotic cells. Based upon their importance in regulating development and terminal differentiation in model systems, erythrocyte microRNA profiles were examined at birth and in adults to determine if changes in their abundance coincide with the developmental phenomenon of hemoglobin switching.

METHODS:

Expression profiling of microRNA was performed using total RNA from four adult peripheral blood samples compared to four cord blood samples after depletion of plasma, platelets, and nucleated cells. Labeled RNAs were hybridized to custom spotted arrays containing 474 human microRNA species (miRBase release 9.1). Total RNA from Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines provided a hybridization reference for all samples to generate microRNA abundance profile for each sample.

RESULTS:

Among 206 detected miRNAs, 79% of the microRNAs were present at equivalent levels in both cord and adult cells. By comparison, 37 microRNAs were up-regulated and 4 microRNAs were down-regulated in adult erythroid cells (fold change > 2; p < 0.01). Among the up-regulated subset, the let-7 miRNA family consistently demonstrated increased abundance in the adult samples by array-based analyses that were confirmed by quantitative PCR (4.5 to 18.4 fold increases in 6 of 8 let-7 miRNA). Profiling studies of messenger RNA (mRNA) in these cells additionally demonstrated down-regulation of ten let-7 target genes in the adult cells.

CONCLUSION:

These data suggest that a consistent pattern of up-regulation among let-7 miRNA in circulating erythroid cells occurs in association with hemoglobin switching during the fetal-to-adult developmental transition in humans.

PMID:
19939273
[PubMed - indexed for MEDLINE]
PMCID:
PMC2792219
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk