Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc IEEE Int Symp Biomed Imaging. 2009 Jul 1;6:1306-1309.

A caGRID-ENABLED, LEARNING BASED IMAGE SEGMENTATION METHOD FOR HISTOPATHOLOGY SPECIMENS.

Author information

  • 1The Cancer Institute of New Jersey, UMDNJ-RWJMS, Piscataway, NJ 08854.

Abstract

Accurate segmentation of tissue microarrays is a challenging topic because of some of the similarities exhibited by normal tissue and tumor regions. Processing speed is another consideration when dealing with imaged tissue microarrays as each microscopic slide may contain hundreds of digitized tissue discs. In this paper, a fast and accurate image segmentation algorithm is presented. Both a whole disc delineation algorithm and a learning based tumor region segmentation approach which utilizes multiple scale texton histograms are introduced. The algorithm is completely automatic and computationally efficient. The mean pixel-wise segmentation accuracy is about 90%. It requires about 1 second for whole disc (1024×1024 pixels) segmentation and less than 5 seconds for segmenting tumor regions. In order to enable remote access to the algorithm and collaborative studies, an analytical service is implemented using the caGrid infrastructure. This service wraps the algorithm and provides interfaces for remote clients to submit images for analysis and retrieve analysis results.

PMID:
19936299
[PubMed]
PMCID:
PMC2779045
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk