Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bone Miner Res. 2010 Jun;25(6):1208-15. doi: 10.1359/jbmr.091110.

ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation.

Author information

  • 1Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.

Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare disabling disease characterized by heterotopic ossification for which there is currently no treatment available. FOP has been linked recently to a heterozygous R206H mutation in the bone morphogenetic protein (BMP) type I receptor activin receptor-like kinase 2 (ALK2). Expression of the mutant ALK2-R206H receptor (FOP-ALK2) results in increased phosphorylation of the downstream Smad1 effector proteins and elevated basal BMP-dependent transcriptional reporter activity, indicating that FOP-ALK2 is constitutively active. FOP-ALK2-induced transcriptional activity could be blocked by overexpressing either of the inhibitory Smads, Smad6 or -7, or by treatment with the pharmacological BMP type I receptor inhibitor dorsomorphin. However, in contrast to wild-type ALK2, FOP-ALK2 is not inhibited by the negative regulator FKBP12. Mesenchymal cells expressing the FOP-ALK2 receptor are more sensitive to undergoing BMP-induced osteoblast differentiation and mineralization. In vivo bone formation was assessed by loading human mesenchymal stem cells (hMSCs) expressing the ALK2-R206H receptor onto calcium phosphate scaffolds and implantation in nude mice. Compared with control cells FOP-ALK2-expressing cells induced increased bone formation. Taken together, the R206H mutation in ALK2 confers constitutive activity to the mutant receptor, sensitizes mesenchymal cells to BMP-induced osteoblast differentiation, and stimulates new bone formation. We have generated an animal model that can be used as a stepping stone for preclinical studies aimed at inhibiting the heterotopic ossification characteristic of FOP.

(c) 2010 American Society for Bone and Mineral Research.

PMID:
19929436
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk