Send to:

Choose Destination
See comment in PubMed Commons below
ACS Chem Biol. 2009 Dec 18;4(12):1061-7. doi: 10.1021/cb900149b.

Mechanism of an amphipathic alpha-helical peptide's antiviral activity involves size-dependent virus particle lysis.

Author information

  • 1Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California 94305, USA.


The N-terminal region of the hepatitis C virus (HCV) nonstructural protein NS5A contains an amphipathic alpha-helix that is necessary and sufficient for NS5A membrane association. A synthetic peptide (AH) comprising this amphipathic helix is able to lyse lipid vesicles that serve as a model system for virus particles. Based on quartz crystal microbalance-dissipation (QCM-D) experiments, the degree of vesicle rupturing was found to be inversely related to vesicle size, with maximal activity in the size range of several medically important viruses. In order to confirm and further study vesicle rupture, dynamic light scattering (DLS) and atomic force microscopy (AFM) experiments were also performed. The size dependence of vesicle rupturing helps explain the peptide's observed effect on the infectivity of a wide range of viruses. Further, in vitro studies demonstrated that AH peptide treatment significantly decreased the infectivity of HCV particles. Thus, the AH peptide might be used to rupture HCV particles extra-corporally (for HCV prevention) and within infected individuals (for HCV therapy).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk