Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Syst Biol. 2009;5:327. doi: 10.1038/msb.2009.84. Epub 2009 Nov 17.

Dissection of a complex transcriptional response using genome-wide transcriptional modelling.

Author information

  • 1Department of Molecular Heamatology and Cancer Biology, UCL Institute of Child Health, London, UK.

Abstract

Modern genomics technologies generate huge data sets creating a demand for systems level, experimentally verified, analysis techniques. We examined the transcriptional response to DNA damage in a human T cell line (MOLT4) using microarrays. By measuring both mRNA accumulation and degradation over a short time course, we were able to construct a mechanistic model of the transcriptional response. The model predicted three dominant transcriptional activity profiles-an early response controlled by NFkappaB and c-Jun, a delayed response controlled by p53, and a late response related to cell cycle re-entry. The method also identified, with defined confidence limits, the transcriptional targets associated with each activity. Experimental inhibition of NFkappaB, c-Jun and p53 confirmed that target predictions were accurate. Model predictions directly explained 70% of the 200 most significantly upregulated genes in the DNA-damage response. Genome-wide transcriptional modelling (GWTM) requires no prior knowledge of either transcription factors or their targets. GWTM is an economical and effective method for identifying the main transcriptional activators in a complex response and confidently predicting their targets.

PMID:
19920812
[PubMed - indexed for MEDLINE]
PMCID:
PMC2795478
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk