Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20515-9. doi: 10.1073/pnas.0911412106. Epub 2009 Nov 16.

The antioxidant role of thiocyanate in the pathogenesis of cystic fibrosis and other inflammation-related diseases.

Author information

  • 1Department of Physiology, Howard Hughes Medical Institute, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA.


Cystic fibrosis (CF) is a pleiotropic disease, originating from mutations in the CF transmembrane conductance regulator (CFTR). Lung injuries inflicted by recurring infection and excessive inflammation cause approximately 90% of the morbidity and mortality of CF patients. It remains unclear how CFTR mutations lead to lung illness. Although commonly known as a Cl(-) channel, CFTR also conducts thiocyanate (SCN(-)) ions, important because, in several ways, they can limit potentially harmful accumulations of hydrogen peroxide (H(2)O(2)) and hypochlorite (OCl(-)). First, lactoperoxidase (LPO) in the airways catalyzes oxidation of SCN(-) to tissue-innocuous hypothiocyanite (OSCN(-)), while consuming H(2)O(2). Second, SCN(-) even at low concentrations competes effectively with Cl(-) for myeloperoxidase (MPO) (which is released by white blood cells), thus limiting OCl(-) production by the enzyme. Third, SCN(-) can rapidly reduce OCl(-) without catalysis. Here, we show that SCN(-) and LPO protect a lung cell line from injuries caused by H(2)O(2); and that SCN(-) protects from OCl(-) made by MPO. Of relevance to inflammation in other diseases, we find that in three other tested cell types (arterial endothelial cells, a neuronal cell line, and a pancreatic beta cell line) SCN(-) at concentrations of > or =100 microM greatly attenuates the cytotoxicity of MPO. Humans naturally derive SCN(-) from edible plants, and plasma SCN(-) levels of the general population vary from 10 to 140 microM. Our findings raise the possibility that insufficient levels of antioxidant SCN(-) provide inadequate protection from OCl(-), thus worsening inflammatory diseases, and predisposing humans to diseases linked to MPO activity, including atherosclerosis, neurodegeneration, and certain cancers.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk