Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Med. 2009 Nov 23;206(12):2761-77. doi: 10.1084/jem.20090652. Epub 2009 Nov 16.

The G protein betagamma subunit mediates reannealing of adherens junctions to reverse endothelial permeability increase by thrombin.

Author information

  • 1Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA.

Abstract

The inflammatory mediator thrombin proteolytically activates protease-activated receptor (PAR1) eliciting a transient, but reversible increase in vascular permeability. PAR1-induced dissociation of Galpha subunit from heterotrimeric Gq and G12/G13 proteins is known to signal the increase in endothelial permeability. However, the role of released Gbetagamma is unknown. We now show that impairment of Gbetagamma function does not affect the permeability increase induced by PAR1, but prevents reannealing of adherens junctions (AJ), thereby persistently elevating endothelial permeability. We observed that in the naive endothelium Gbeta1, the predominant Gbeta isoform is sequestered by receptor for activated C kinase 1 (RACK1). Thrombin induced dissociation of Gbeta1 from RACK1, resulting in Gbeta1 interaction with Fyn and focal adhesion kinase (FAK) required for FAK activation. RACK1 depletion triggered Gbeta1 activation of FAK and endothelial barrier recovery, whereas Fyn knockdown interrupted with Gbeta1-induced barrier recovery indicating RACK1 negatively regulates Gbeta1-Fyn signaling. Activated FAK associated with AJ and stimulated AJ reassembly in a Fyn-dependent manner. Fyn deletion prevented FAK activation and augmented lung vascular permeability increase induced by PAR1 agonist. Rescuing FAK activation in fyn(-/-) mice attenuated the rise in lung vascular permeability. Our results demonstrate that Gbeta1-mediated Fyn activation integrates FAK with AJ, preventing persistent endothelial barrier leakiness.

PMID:
19917775
[PubMed - indexed for MEDLINE]
PMCID:
PMC2806626
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk