Send to:

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2010 Jan 15;48(2):318-24. doi: 10.1016/j.freeradbiomed.2009.11.002. Epub 2009 Nov 10.

Benzene and dopamine catechol quinones could initiate cancer or neurogenic disease.

Author information

  • 1Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.


Catechol quinones of estrogens react with DNA by 1,4-Michael addition to form depurinating N3Ade and N7Gua adducts. Loss of these adducts from DNA creates apurinic sites that can generate mutations leading to cancer initiation. We compared the reactions of the catechol quinones of the leukemogenic benzene (CAT-Q) and N-acetyldopamine (NADA-Q) with 2'-deoxyguanosine (dG) or DNA. NADA was used to prevent intramolecular cyclization of dopamine quinone. Reaction of CAT-Q or NADA-Q with dG at pH 4 afforded CAT-4-N7dG or NADA-6-N7dG, which lost deoxyribose with a half-life of 3 h to form CAT-4-N7Gua or 4 h to form NADA-6-N7Gua. When CAT-Q or NADA-Q was reacted with DNA, N3Ade adducts were formed and lost from DNA instantaneously, whereas N7Gua adducts were lost over several hours. The maximum yield of adducts in the reaction of CAT-Q or NADA-Q with DNA at pH 4 to 7 was at pH 4. When tyrosinase-activated CAT or NADA was reacted with DNA at pH 5 to 8, adduct levels were much higher (10- to 15-fold), and the highest yield was at pH 5. Reaction of catechol quinones of natural and synthetic estrogens, benzene, naphthalene, and dopamine with DNA to form depurinating adducts is a common feature that may lead to initiation of cancer or neurodegenerative disease.

Copyright 2009 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk