Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2010 Jan 15;425(3):541-51. doi: 10.1042/BJ20090429.

Activation of autophagy through modulation of 5'-AMP-activated protein kinase protects pancreatic beta-cells from high glucose.

Author information

  • 1Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.

Abstract

Chronic hyperglycaemia is detrimental to pancreatic beta-cells by causing impaired insulin secretion and diminished beta-cell function through glucotoxicity. Understanding the mechanisms underlying beta-cell survival is crucial for the prevention of beta-cell failure associated with glucotoxicity. Autophagy is a dynamic lysosomal degradation process that protects organisms against metabolic stress. To date, little is known about the physiological function of autophagy in the pathogenesis of diabetes. In the present study, we explored the roles of autophagy in the survival of pancreatic beta-cells exposed to high glucose using pharmacological and genetic manipulation of autophagy. We demonstrated that chronic high glucose increases autophagy in rat INS-1 (832/13) cells and pancreatic islets, and that this increase is enhanced by inhibition of 5'-AMP-activated protein kinase. Our results also indicate that stimulation of autophagy rescues pancreatic beta-cells from high-glucose-induced cell death and inhibition of autophagy augments caspase-3 activation, suggesting that autophagy plays a protective role in the survival of pancreatic beta-cells. Greater knowledge of the molecular mechanisms linking autophagy and beta-cell survival may unveil novel therapeutic targets needed to preserve beta-cell function.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk