Format

Send to:

Choose Destination
See comment in PubMed Commons below
Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b.

Solar fuels via artificial photosynthesis.

Author information

  • 1Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287, USA.

Abstract

Because sunlight is diffuse and intermittent, substantial use of solar energy to meet humanity's needs will probably require energy storage in dense, transportable media via chemical bonds. Practical, cost effective technologies for conversion of sunlight directly into useful fuels do not currently exist, and will require new basic science. Photosynthesis provides a blueprint for solar energy storage in fuels. Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. Artificial photosynthesis research applies the fundamental scientific principles of the natural process to the design of solar energy conversion systems. These constructs use different materials, and researchers tune them to produce energy efficiently and in forms useful to humans. Fuel production via natural or artificial photosynthesis requires three main components. First, antenna/reaction center complexes absorb sunlight and convert the excitation energy to electrochemical energy (redox equivalents). Then, a water oxidation complex uses this redox potential to catalyze conversion of water to hydrogen ions, electrons stored as reducing equivalents, and oxygen. A second catalytic system uses the reducing equivalents to make fuels such as carbohydrates, lipids, or hydrogen gas. In this Account, we review a few general approaches to artificial photosynthetic fuel production that may be useful for eventually overcoming the energy problem. A variety of research groups have prepared artificial reaction center molecules. These systems contain a chromophore, such as a porphyrin, covalently linked to one or more electron acceptors, such as fullerenes or quinones, and secondary electron donors. Following the excitation of the chromophore, photoinduced electron transfer generates a primary charge-separated state. Electron transfer chains spatially separate the redox equivalents and reduce electronic coupling, slowing recombination of the charge-separated state to the point that catalysts can use the stored energy for fuel production. Antenna systems, employing a variety of chromophores that absorb light throughout the visible spectrum, have been coupled to artificial reaction centers and have incorporated control and photoprotective processes borrowed from photosynthesis. Thus far, researchers have not discovered practical solar-driven catalysts for water oxidation and fuel production that are robust and use earth-abundant elements, but they have developed artificial systems that use sunlight to produce fuel in the laboratory. For example, artificial reaction centers, where electrons are injected from a dye molecule into the conduction band of nanoparticulate titanium dioxide on a transparent electrode, coupled to catalysts, such as platinum or hydrogenase enzymes, can produce hydrogen gas. Oxidizing equivalents from such reaction centers can be coupled to iridium oxide nanoparticles, which can oxidize water. This system uses sunlight to split water to oxygen and hydrogen fuel, but efficiencies are low and an external electrical potential is required. Although attempts at artificial photosynthesis fall short of the efficiencies necessary for practical application, they illustrate that solar fuel production inspired by natural photosynthesis is achievable in the laboratory. More research will be needed to identify the most promising artificial photosynthetic systems and realize their potential.

PMID:
19902921
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk