Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Behav Res Methods. 2009 Nov;41(4):1201-9. doi: 10.3758/BRM.41.4.1201.

Effect of tuned parameters on an LSA multiple choice questions answering model.

Author information

  • 1LIP6-DAPA, Université Pierre et Marie Curie, CNRS, Paris, France. alain.lifchitz@lip6.fr

Abstract

This article presents the current state of a work in progress, whose objective is to better understand the effects of factors that significantly influence the performance of latent semantic analysis (LSA). A difficult task, which consisted of answering (French) biology multiple choice questions, was used to test the semantic properties of the truncated singular space and to study the relative influence of the main parameters. A dedicated software was designed to fine-tune the LSA semantic space for the multiple choice questions task. With optimal parameters, the performances of our simple model were quite surprisingly equal or superior to those of seventh- and eighth-grade students. This indicates that semantic spaces were quite good despite their low dimensions and the small sizes of the training data sets. In addition, we present an original entropy global weighting of the answers' terms for each of the multiple choice questions, which was necessary to achieve the model's success.

PMID:
19897829
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk