Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Curr Opin Biotechnol. 2009 Dec;20(6):623-32. doi: 10.1016/j.copbio.2009.10.001. Epub 2009 Nov 10.

Syntrophy in anaerobic global carbon cycles.

Author information

  • 1Department of Botany and Microbiology, University of Oklahoma, 770 Van Vleet Oval, Norman, Oklahoma 73019, USA.

Abstract

Syntrophy is an essential intermediary step in the anaerobic conversion of organic matter to methane where metabolically distinct microorganisms are tightly linked by the need to maintain the exchanged metabolites at very low concentrations. Anaerobic syntrophy is thermodynamically constrained, and is probably a prime reason why it is difficult to culture microbes as these approaches disrupt consortia. Reconstruction of artificial syntrophic consortia has allowed uncultured syntrophic metabolizers and methanogens to be optimally grown and studied biochemically. The pathways for syntrophic acetate, propionate and longer chain fatty acid metabolism are mostly understood, but key steps involved in benzoate breakdown and cyclohexane carboxylate formation are unclear. Syntrophic metabolism requires reverse electron transfer, close physical contact, and metabolic synchronization of the syntrophic partners. Genomic analyses reveal that multiple mechanisms exist for reverse electron transfer. Surprisingly, the flagellum functions were implicated in ensuring close physical proximity and synchronization of the syntrophic partners.

PMID:
19897353
[PubMed - indexed for MEDLINE]
PMCID:
PMC2790021
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk