Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Neurosci. 2010 Feb;43(2):177-87. doi: 10.1016/j.mcn.2009.10.008. Epub 2009 Nov 6.

An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury.

Author information

  • 1Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.

Abstract

After central nervous system (CNS) injury, meningeal fibroblasts migrate in the lesion center to form a fibrotic scar which is surrounded by end feet of reactive astrocytes. The fibrotic scar expresses various axonal growth-inhibitory molecules and creates a major impediment for axonal regeneration. We developed an in vitro model of the scar using coculture of cerebral astrocytes and meningeal fibroblasts by adding transforming growth factor-beta1 (TGF-beta1), a potent fibrogenic factor. Addition of TGF-beta1 to this coculture resulted in enhanced proliferation of fibroblasts and the formation of cell clusters which consisted of fibroblasts inside and surrounded by astrocytes. The cell cluster in culture densely accumulated the extracellular matrix molecules and axonal growth-inhibitory molecules similar to the fibrotic scar, and remarkably inhibited the neurite outgrowth of cerebellar neurons. Therefore, this culture system can be available to analyze the inhibitory property in the lesion site of CNS.

Copyright 2009 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk