Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Diabetes Sci Technol. 2008 Nov;2(6):1101-13.

Alzheimer's disease is type 3 diabetes-evidence reviewed.

Author information

  • 1Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA. suzanne_delamonte_md@brown.edu

Abstract

Alzheimer's disease (AD) has characteristic histopathological, molecular, and biochemical abnormalities, including cell loss; abundant neurofibrillary tangles; dystrophic neurites; amyloid precursor protein, amyloid-beta (APP-Abeta) deposits; increased activation of prodeath genes and signaling pathways; impaired energy metabolism; mitochondrial dysfunction; chronic oxidative stress; and DNA damage. Gaining a better understanding of AD pathogenesis will require a framework that mechanistically interlinks all these phenomena. Currently, there is a rapid growth in the literature pointing toward insulin deficiency and insulin resistance as mediators of AD-type neurodegeneration, but this surge of new information is riddled with conflicting and unresolved concepts regarding the potential contributions of type 2 diabetes mellitus (T2DM), metabolic syndrome, and obesity to AD pathogenesis. Herein, we review the evidence that (1) T2DM causes brain insulin resistance, oxidative stress, and cognitive impairment, but its aggregate effects fall far short of mimicking AD; (2) extensive disturbances in brain insulin and insulin-like growth factor (IGF) signaling mechanisms represent early and progressive abnormalities and could account for the majority of molecular, biochemical, and histopathological lesions in AD; (3) experimental brain diabetes produced by intracerebral administration of streptozotocin shares many features with AD, including cognitive impairment and disturbances in acetylcholine homeostasis; and (4) experimental brain diabetes is treatable with insulin sensitizer agents, i.e., drugs currently used to treat T2DM. We conclude that the term "type 3 diabetes" accurately reflects the fact that AD represents a form of diabetes that selectively involves the brain and has molecular and biochemical features that overlap with both type 1 diabetes mellitus and T2DM.

KEYWORDS:

Alzheimer's disease, central nervous system, diabetes, insulin gene expression, insulin signaling

PMID:
19885299
[PubMed]
PMCID:
PMC2769828
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Diabetes Technology Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk