Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2010 Jan 1;26(1):104-10. doi: 10.1093/bioinformatics/btp619. Epub 2009 Oct 29.

Simulation-based model selection for dynamical systems in systems and population biology.

Author information

  • 1Division of Molecular Biosciences, Imperial College London, Wolfson Building, SW72AZ London, UK. ttoni@imperial.ac.uk

Abstract

MOTIVATION:

Computer simulations have become an important tool across the biomedical sciences and beyond. For many important problems several different models or hypotheses exist and choosing which one best describes reality or observed data is not straightforward. We therefore require suitable statistical tools that allow us to choose rationally between different mechanistic models of, e.g. signal transduction or gene regulation networks. This is particularly challenging in systems biology where only a small number of molecular species can be assayed at any given time and all measurements are subject to measurement uncertainty.

RESULTS:

Here, we develop such a model selection framework based on approximate Bayesian computation and employing sequential Monte Carlo sampling. We show that our approach can be applied across a wide range of biological scenarios, and we illustrate its use on real data describing influenza dynamics and the JAK-STAT signalling pathway. Bayesian model selection strikes a balance between the complexity of the simulation models and their ability to describe observed data. The present approach enables us to employ the whole formal apparatus to any system that can be (efficiently) simulated, even when exact likelihoods are computationally intractable.

PMID:
19880371
[PubMed - indexed for MEDLINE]
PMCID:
PMC2796821
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk