Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Struct Biol. 2010 Apr;170(1):1-9. doi: 10.1016/j.jsb.2009.10.004. Epub 2009 Oct 23.

Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging.

Author information

  • 1European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany. Thomas.Walter@embl.de

Abstract

High-throughput time-lapse microscopy is an excellent way of studying gene function by collecting time-resolved image data of the cellular responses to gene perturbations. With the increase in both data amount and complexity, computational methods capable of dealing with large image data sets are required. While image processing methods have been successfully applied to endpoint assays in the past, the analysis of complex time-resolved read-outs was so far still too immature to be applied on a large-scale. Here, we present a complete computational processing pipeline for such screens. By automatic image processing and machine learning, a quantitative description of phenotypic dynamics is obtained from the raw bitmaps. In order to visualize the resulting phenotypes in their temporal context, we introduce Event Order Maps allowing a concise representation of the major tendencies of causes and consequences of phenotypic classes. In order to cluster the phenotypic kinetics, we propose a novel technique based on trajectory representation of multidimensional time series. We demonstrate the use of these methods applying them on a genome wide RNAi screen by time-lapse microscopy.

(c) 2009 Elsevier Inc. All rights reserved.

PMID:
19854275
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk