Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2009 Oct 19;187(2):279-94. doi: 10.1083/jcb.200903028.

PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death.

Author information

  • 1Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Abstract

Voltage-gated Ca(2+) channels (VGCCs) play a key role in neuronal signaling but can also contribute to cellular dysfunction and death under pathological conditions such as stroke and neurodegenerative diseases. We report that activation of N-methyl-D-aspartic acid receptors causes internalization and degradation of Ca(V)1.2 channels, resulting in decreased Ca(2+) entry and reduced toxicity. Ca(V)1.2 internalization and degradation requires binding to phosphatidylinositol 3-phosphate 5-kinase (PIKfyve), a lipid kinase which generates phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P(2)) and regulates endosome and lysosome function. Sustained activation of glutamate receptors recruits PIKfyve to Ca(V)1.2 channels, increases cellular levels of PtdIns(3,5)P(2), and promotes targeting of Ca(V)1.2 to lysosomes. Knockdown of PIKfyve prevents Ca(V)1.2 degradation and increases neuronal susceptibility to excitotoxicity. These experiments identify a novel mechanism by which neurons are protected from excitotoxicity and provide a possible explanation for neuronal death in diseases caused by mutations that affect PtdIns(3,5)P(2) regulation.

PMID:
19841139
[PubMed - indexed for MEDLINE]
PMCID:
PMC2768838
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk