Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2009 Dec;297(6):H2253-61. doi: 10.1152/ajpheart.00274.2009. Epub 2009 Oct 16.

Caspase-mediated protein kinase C-delta cleavage is necessary for apoptosis of vascular smooth muscle cells.

Author information

  • 1Department of Surgery, University of Wisconsin, Madison, Wisconsin 53705, USA.

Abstract

Apoptotic death of vascular smooth muscle cells (SMCs) is a prominent feature of blood vessel remodeling and various vascular diseases. We have previously shown that protein kinase C-delta (PKC-delta) plays a critical role in SMC apoptosis. In this study, we tested the importance of PKC-delta proteolytic cleavage and tyrosine phosphorylation within the apoptosis pathway. Using hydrogen peroxide as a paradigm for oxidative stress, we showed that proteolytic cleavage of PKC-delta occurred in SMCs that underwent apoptosis, while tyrosine phosphorylation was detected only in necrotic cells. Furthermore, using a peptide (z-DIPD-fmk) that mimics the caspase-3 binding motif within the linker region of PKC-delta, we were able to prevent the cleavage of PKC-delta, as well as apoptosis. Inhibition of PKC-delta with rottlerin or small-interfering RNA diminished caspase-3 cleavage, caspase-3 activity, cleavage of poly (ADP-ribose) polymerase, cleavage of PKC-delta, and DNA fragmentation, confirming the previously reported role of PKC-delta in initiation of apoptosis. In contrast, z-DIPD-fmk markedly diminished caspase-3 activity, cleavage of PKC-delta, and DNA fragmentation without affecting cleavage of caspase-3 and poly (ADP-ribose) polymerase. Taken together, our data suggest that caspase-3-mediated PKC-delta cleavage underlies SMC apoptosis induced by oxidative stress, and that PKC-delta acts both upstream and downstream of caspase-3.

PMID:
19837952
[PubMed - indexed for MEDLINE]
PMCID:
PMC2793135
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk