Format

Send to:

Choose Destination
See comment in PubMed Commons below
Spine (Phila Pa 1976). 2009 Oct 15;34(22):E794-9. doi: 10.1097/BRS.0b013e3181afe4bb.

Effect of two-level total disc replacement on cervical spine kinematics.

Author information

  • 1Musculoskeletal Biomechanics Laboratory, Edward Hines Jr. VA Hospital, Hines, IL, USA.

Abstract

STUDY DESIGN:

Biomechanical study using human cadaver spines.

OBJECTIVE:

To characterize kinematics of cervical spines implanted with total disc replacement (TDR) at 2-levels referencing the implanted and adjacent levels.

SUMMARY OF BACKGROUND DATA:

Cervical TDR is an appealing alternative to fusion particularly when treating multilevel disease, where the advantages of maintaining motion and reducing adjacent level stresses with TDR are compelling. To our knowledge there are no biomechanical studies evaluating multilevel cervical TDR.

METHODS:

Six human cadaveric cervical spine specimens (C3-C7, age: 57 +/- 12 years) were tested (i) intact, (ii) after TDR (Discover, DePuy, Raynham, MA) at C5-C6, and (iii) after additional TDR at C6-C7. Specimens were subjected to flexion/extension, lateral bending and axial rotation (+/-1.5 Nm). Segmental range of motion (ROM) was measured using optoelectronic instrumentation and fluoroscopy.

RESULTS:

Insertion of TDR at C5-C6 increased flexion/extension ROM of the implanted segment compared with intact (8.6 +/- 1.0 vs. 12.3 +/- 3.3 degrees , P < 0.025). The TDR maintained ROM to intact levels in lateral bending (7.4 +/- 2.6 vs 6.0 +/- 1.6, P > 0.025) and axial rotation (5.5 +/- 1.9 vs. 6.0 +/- 2.9, P > 0.025). The TDR at C5-C6 did not affect ROM at the adjacent levels. Implantation of a second TDR at C6-C7 maintained the ROM at that segment to intact values in flexion/extension (9.6 +/- 4.3 vs. 11.2 +/- 5.5, P > 0.025), lateral bending (6.1 +/- 4.0 vs. 4.1 +/- 2.1, P > 0.025), and axial rotation (6.7 +/- 3.6 vs. 5.5 +/- 3.7, P > 0.025). The second TDR at C6-C7 did not affect the ROM of the prosthesis implanted at C5-C6. Two-level TDR at C5-C6-C7 did not affect the ROM at C4-C5 in flexion/extension or axial rotation, however, in lateral bending a small increase occurred (8.9 +/- 3.6 vs. 10.1 +/- 4.5, P < 0.025).

CONCLUSION:

Cervical TDR at 2 levels can provide near-normal mobility at both levels without destabilizing the implanted segments or affecting adjacent segment motions. These observations lend support to the notion that single or multilevel cervical TDR may be advantageous when compared to fusion.

PMID:
19829242
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk