Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Evol. 2009 Nov;69(5):497-504. doi: 10.1007/s00239-009-9294-6. Epub 2009 Oct 14.

Disrupted tRNA gene diversity and possible evolutionary scenarios.

Author information

  • 1Institute for Advanced Biosciences, Keio University, Tsuruoka, 403-1 Nipponkoku, Tsuruoka, Yamagata, 997-0017, Japan.

Abstract

The following unusual tRNAs have recently been discovered in the genomes of Archaea and primitive Eukaryota: multiple-intron-containing tRNAs, which have more than one intron; split tRNAs, which are produced from two pieces of RNA transcribed from separate genes; tri-split tRNAs, which are produced from three separate genes; and permuted tRNA, in which the 5' and 3' halves are encoded with permuted orientations within a single gene. All these disrupted tRNA genes can form mature contiguous tRNA, which is aminoacylated after processing by cis or trans splicing. The discovery of such tRNA disruptions has raised the question of when and why these complex tRNA processing pathways emerged during the evolution of life. Many previous reports have noted that tRNA genes contain a single intron in the anticodon loop region, a feature common throughout all three domains of life, suggesting an ancient trait of the last universal common ancestor. In this context, these unique tRNA disruptions recently found only in Archaea and primitive Eukaryota provide new insight into the origin and evolution of tRNA genes, encouraging further research in this field. In this paper, we summarize the phylogeny, structure, and processing machinery of all known types of disrupted tRNAs and discuss possible evolutionary scenarios for these tRNA genes.

PMID:
19826747
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk