Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2010 Jan 13;165(1):107-15. doi: 10.1016/j.neuroscience.2009.09.077. Epub 2009 Oct 9.

CHL1 cooperates with PAK1-3 to regulate morphological differentiation of embryonic cortical neurons.

Author information

  • 1Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine at Chapel Hill, 27599, USA.


The cell adhesion molecule close homologue of L1 (CHL1) is important for apical dendritic projection and laminar positioning of pyramidal neurons in caudal regions of the cerebral cortex. The p21-activated kinase (PAK1-3) subfamily of serine/threonine kinases has also been implicated in regulating cell adhesion, migration, and morphology. Immunofluorescence staining in mouse embryonic brain showed that PAK1-3 was expressed in embryonic cortex and colocalized with CHL1 during neuronal migration and differentiation. To investigate a cooperative function for CHL1 and PAK in pyramidal cell differentiation or migration, a dominant-negative PAK mutant (PAK1 AID) that inhibits PAK1-3 kinase activity while coexpressing a green fluorescent protein (GFP) reporter was electroporated into the lateral ventricles of wild type (WT) and CHL1 null mutant mouse embryos (E14.5), then brain slices were cultured and neurons analyzed for laminar positioning and morphology by confocal microscopy after 3 days in vitro. Expression of PAK1 AID in CHL1 mutant cortex inactivated PAK and caused embryonic cortical neurons to branch profusely in the intermediate zone (IZ) and cortical plate (CP). The number of nodes, terminals and length of leading processes/apical dendrites of CHL1 mutant embryos expressing PAK1 AID increased dramatically, compared to CHL1 mutants without PAK1 AID, or WT embryos with or without PAK1 AID. These findings suggest that CHL1 and PAK1-3 kinase cooperate, most likely in independent pathways, in regulating morphological development of the leading process/apical dendrite of embryonic cortical neurons.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk