Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Obesity (Silver Spring). 2010 Apr;18(4):743-8. doi: 10.1038/oby.2009.325. Epub 2009 Oct 8.

BMI and neuronal integrity in healthy, cognitively normal elderly: a proton magnetic resonance spectroscopy study.

Author information

  • 1Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Administration Medical Center, San Francisco, California, USA. Stefan.Gazdzinski@yahoo.com

Abstract

Recent studies associated excess body weight with brain structural alterations, poorer cognitive function, and lower prefrontal glucose metabolism. We found that higher BMI was related to lower concentrations of N-acetyl-aspartate (NAA, a marker of neuronal integrity) in a healthy middle-aged cohort, especially in frontal lobe. Here, we evaluated whether NAA was also associated with BMI in a healthy elderly cohort. We used 4 Tesla proton magnetic resonance spectroscopy ((1)H MRS) data from 23 healthy, cognitively normal elderly participants (69.4 +/- 6.9 years; 12 females) and measured concentrations of NAA, glutamate (Glu, involved in cellular metabolism), choline-containing compounds (Cho, involved in membrane metabolism), and creatine (Cr, involved in high-energy metabolism) in anterior (ACC) and posterior cingulate cortices (PCC). After adjustment for age, greater BMI was related to lower NAA/Cr and NAA/Cho ratios (beta < -0.56, P < 0.008) and lower Glu/Cr and Glu/Cho ratios (beta < -0.46, P < 0.02) in ACC. These associations were not significant in PCC (beta > -0.36, P > 0.09). The existence of an association between NAA and BMI in ACC but not in PCC is consistent with our previous study in healthy middle-aged individuals and with reports of lower frontal glucose metabolism in young healthy individuals with elevated BMI. Taken together, these results provide evidence that elevated BMI is associated with neuronal abnormalities mostly in frontal brain regions that subserve higher cognitive functions and impulse control. Future studies need to evaluate whether these metabolite abnormalities are involved in the development and maintenance of weight problems.

PMID:
19816410
[PubMed - indexed for MEDLINE]
PMCID:
PMC2847061
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk