Send to:

Choose Destination
See comment in PubMed Commons below
J Biomech. 2010 Jan 5;43(1):15-22. doi: 10.1016/j.jbiomech.2009.09.004. Epub 2009 Oct 6.

A multi-scale approach to understand the mechanobiology of intermediate filaments.

Author information

  • 1Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235A&B, Cambridge, MA 02139, USA.


The animal cell cytoskeleton consists of three interconnected filament systems: actin microfilaments, microtubules and the lesser known intermediate filaments (IFs). All mature IF proteins share a common tripartite domain structure and the ability to assemble into 8-12nm wide filaments. At the time of their discovery in the 1980s, IFs were only considered as passive elements of the cytoskeleton mainly involved in maintaining the mechanical integrity of tissues. Since then, our knowledge of IFs structure, assembly plan and functions has improved dramatically. Especially, single IFs show a unique combination of extensibility, flexibility and toughness that is a direct consequence of their unique assembly plan. In this review we will first discuss the mechanical design of IFs by combining the experimental data with recent multi-scale modeling results. Then we will discuss how mechanical forces may interact with IFs in vivo both directly and through the activation of other proteins such as kinases.

Copyright 2009 Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk