Send to:

Choose Destination
See comment in PubMed Commons below
Circ Cardiovasc Imaging. 2009 Sep;2(5):391-6. doi: 10.1161/CIRCIMAGING.108.801712. Epub 2009 Aug 17.

Increased neovascularization in advanced lipid-rich atherosclerotic lesions detected by gadofluorine-M-enhanced MRI: implications for plaque vulnerability.

Author information

  • 1Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris 7-Denis Diderot, Paris, France.



Inflammation and neovascularization may play a significant role in atherosclerotic plaque progression and rupture. We evaluated gadofluorine-M-enhanced MRI for detection of plaque inflammation and neovascularization in an animal model of atherosclerosis.


Sixteen rabbits with aortic plaque and 6 normal control rabbits underwent gadofluorine-M-enhanced MRI. Eight rabbits had advanced atherosclerotic lesions, whereas the remaining 8 had early lesions. Magnetic resonance atherosclerotic plaque enhancement was meticulously compared with plaque inflammation and neovessel density as assessed by histopathology. Advanced plaques and early atheroma were enhanced after gadofluorine-M injection. Control animals displayed no enhancement. After accounting for the within-animal correlation of observations, mean contrast-to-noise ratio was significantly higher in advanced plaques than compared with early atheroma (4.29+/-0.21 versus 3.00+/-0.32; P=0.004). Macrophage density was higher in advanced plaques in comparison to early atheroma (geometric mean=0.50 [95% CI, 0.19 to 1.03] versus 0.25 [0.07 to 0.42]; P=0.05). Furthermore, higher neovessel density was observed in advanced plaques (1.83 [95% CI, 1.51 to 2.21] versus 1.29 [0.99 to 1.69]; P=0.05). The plaque accumulation of gadofluorine-M correlated with increased neovessel density as shown by linear regression analysis (r=0.67; P<0.001). Confocal and fluorescence microscopy revealed colocalization of gadofluorine-M with plaque areas containing a high density of neovessels.


Gadofluorine-M-enhanced MRI is effective for in vivo detection of atherosclerotic plaque inflammation and neovascularization in an animal model of atherosclerosis. These findings suggest that gadofluorine-M enhancement reflects the presence of high-risk plaque features believed to be associated with plaque rupture. Gadofluorine-M plaque enhancement may therefore provide functional assessment of atherosclerotic plaque in vivo.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk