Display Settings:

Format

Send to:

Choose Destination
Cell Metab. 2009 Oct;10(4):249-59. doi: 10.1016/j.cmet.2009.08.013.

MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity.

Author information

  • 1Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, D-50674 Cologne, Germany.

Abstract

Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR4 signaling by fatty acids. Here, we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterized mice deficient for the TLR adaptor molecule MyD88 in the CNS (MyD88(DeltaCNS)). Compared to control mice, MyD88(DeltaCNS) mice are protected from high-fat diet (HFD)-induced weight gain, from the development of HFD-induced leptin resistance, and from the induction of leptin resistance by acute central application of palmitate. Moreover, CNS-restricted MyD88 deletion protects from HFD- and icv palmitate-induced impairment of peripheral glucose metabolism. Thus, we define neuronal MyD88-dependent signaling as a key regulator of diet-induced leptin and insulin resistance in vivo.

Comment in

PMID:
19808018
[PubMed - indexed for MEDLINE]
PMCID:
PMC3898351
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Write to the Help Desk