Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Neurosci. 2009 Oct 6;10:126. doi: 10.1186/1471-2202-10-126.

Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke.

Author information

  • 1Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA. norim@med.nagoya-cu.ac.jp

Abstract

BACKGROUND:

Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, has been shown to promote therapeutic benefits in experimental stroke. However, equally compelling evidence demonstrates that the drug exerts variable and even detrimental effects in many neurological disease models. Assessment of the mechanism underlying minocycline neuroprotection should clarify the drug's clinical value in acute stroke setting.

RESULTS:

Here, we demonstrate that minocycline attenuates both in vitro (oxygen glucose deprivation) and in vivo (middle cerebral artery occlusion) experimentally induced ischemic deficits by direct inhibition of apoptotic-like neuronal cell death involving the anti-apoptotic Bcl-2/cytochrome c pathway. Such anti-apoptotic effect of minocycline is seen in neurons, but not apparent in astrocytes. Our data further indicate that the neuroprotection is dose-dependent, in that only low dose minocycline inhibits neuronal cell death cascades at the acute stroke phase, whereas the high dose exacerbates the ischemic injury.

CONCLUSION:

The present study advises our community to proceed with caution to use the minimally invasive intravenous delivery of low dose minocycline in order to afford neuroprotection that is safe for stroke.

PMID:
19807907
[PubMed - indexed for MEDLINE]
PMCID:
PMC2762982
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk