Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2009 Oct 5;187(1):15-23. doi: 10.1083/jcb.200905006.

Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis.

Author information

  • 1Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.

Abstract

The Tim (Timeless)-Tipin complex has been proposed to maintain genome stability by facilitating ATR-mediated Chk1 activation. However, as a replisome component, Tim-Tipin has also been suggested to couple DNA unwinding to synthesis, an activity expected to suppress single-stranded DNA (ssDNA) accumulation and limit ATR-Chk1 pathway engagement. We now demonstrate that Tim-Tipin depletion is sufficient to increase ssDNA accumulation at replication forks and stimulate ATR activity during otherwise unperturbed DNA replication. Notably, suppression of the ATR-Chk1 pathway in Tim-Tipin-deficient cells completely abrogates nucleotide incorporation in S phase, indicating that the ATR-dependent response to Tim-Tipin depletion is indispensible for continued DNA synthesis. Replication failure in ATR/Tim-deficient cells is strongly associated with synergistic increases in H2AX phosphorylation and DNA double-strand breaks, suggesting that ATR pathway activation preserves fork stability in instances of Tim-Tipin dysfunction. Together, these experiments indicate that the Tim-Tipin complex stabilizes replication forks both by preventing the accumulation of ssDNA upstream of ATR-Chk1 function and by facilitating phosphorylation of Chk1 by ATR.

PMID:
19805627
[PubMed - indexed for MEDLINE]
PMCID:
PMC2762102
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk