Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biosens Bioelectron. 2009 Dec 15;25(4):901-5. doi: 10.1016/j.bios.2009.09.004. Epub 2009 Sep 6.

Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing.

Author information

  • 1Pacific Northwest National Laboratory, Richland, WA 99352, USA.

Abstract

Direct electrochemistry of a glucose oxidase (GOD)-graphene-chitosan nanocomposite was studied. The immobilized enzyme retains its bioactivity, exhibits a surface confined, reversible two-proton and two-electron transfer reaction, and has good stability, activity and a fast heterogeneous electron transfer rate with the rate constant (k(s)) of 2.83 s(-1). A much higher enzyme loading (1.12 x 10(-9)mol/cm(2)) is obtained as compared to the bare glass carbon surface. This GOD-graphene-chitosan nanocomposite film can be used for sensitive detection of glucose. The biosensor exhibits a wider linearity range from 0.08mM to 12mM glucose with a detection limit of 0.02mM and much higher sensitivity (37.93microAmM(-1)cm(-2)) as compared with other nanostructured supports. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of graphene, and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes direct electron transfer between redox enzymes and the surface of electrodes.

PMID:
19800781
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk