Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Drug Metab Dispos. 2010 Jan;38(1):143-9. doi: 10.1124/dmd.109.029306.

Intestinal detoxification limits the activation of hepatic pregnane X receptor by lithocholic acid.

Author information

  • 1Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom.


The intestinal-derived secondary bile acid (BA) lithocholic acid (LCA) is hepatotoxic and is implicated in the pathogenesis of cholestatic diseases. LCA is an endogenous ligand of the xenobiotic nuclear receptor pregnane X receptor (PXR), but there is currently no consensus on the respective roles of hepatic and intestinal PXR in mediating protection against LCA in vivo. Under the conditions reported here, we show that mice lacking Pxr are resistant to LCA-mediated hepatotoxicity. This unexpected phenotype is found in association with enhanced urinary BA excretion and elevated basal expression of drug metabolism enzymes and the hepatic sulfate donor synthesis enzyme Papss2 in Pxr(-/-) mice. By subsequently comparing molecular responses to dietary and intraperitoneal administration of LCA, we made two other significant observations: 1) LCA feeding induces intestinal, but not hepatic, drug-metabolizing enzymes in a largely Pxr-independent manner; and 2) in contrast to LCA feeding, bypassing first-pass gut transit by intraperitoneal administration of LCA did induce hepatic detoxification machinery and in a Pxr-dependent manner. These data reconcile important discrepancies in the reported molecular responses to this BA and suggest that Pxr plays only a limited role in mediating responses to gut-derived LCA. Furthermore, the route of administration must be considered in the future planning and interpretation of experiments designed to assess hepatic responses to BAs, orally administered pharmaceuticals, and dietary toxins.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk