Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Neurosci Lett. 1990 Aug 14;116(1-2):168-71.

A 3,4-dihydroxyphenylalanine oxidation product is a non-N-methyl-D-aspartate glutamatergic agonist in rat cortical neurons.

Author information

  • 1Department of Physiology, University of Pittsburgh School of Medicine, PA 15261.


Applications of solutions of 2,4,5-trihydroxyphenylalanine (TOPA or 6-hydroxyDOPA) to rat cortical neurons in culture monitored under whole-cell voltage clamp with patch electrodes resulted in currents which could be nearly completely blocked by the non-N-methyl-D-aspartate (non-NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but only weakly antagonized by the NMDA antagonist D.L-2-amino-5-phosphonovalerate (APV). Thus, TOPA can generate glutamatergic responses by interacting preferentially with non-NMDA receptors in cortical neurons. As these results show that a product closely related to the catecholamine precursor 3,4-dihydroxyphenylalanine (DOPA) has glutamatergic agonist properties, it is conceivable that catecholamine-containing brain areas may be at special risk for excitotoxic damage under certain conditions.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk