Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2009 Oct 5;187(1):53-60. doi: 10.1083/jcb.200906133. Epub 2009 Sep 28.

Coupled myosin VI motors facilitate unidirectional movement on an F-actin network.

Author information

  • 1Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.

Abstract

Unconventional myosins interact with the dense cortical actin network during processes such as membrane trafficking, cell migration, and mechanotransduction. Our understanding of unconventional myosin function is derived largely from assays that examine the interaction of a single myosin with a single actin filament. In this study, we have developed a model system to study the interaction between multiple tethered unconventional myosins and a model F-actin cortex, namely the lamellipodium of a migrating fish epidermal keratocyte. Using myosin VI, which moves toward the pointed end of actin filaments, we directly determine the polarity of the extracted keratocyte lamellipodium from the cell periphery to the cell nucleus. We use a combination of experimentation and simulation to demonstrate that multiple myosin VI molecules can coordinate to efficiently transport vesicle-size cargo over 10 microm of the dense interlaced actin network. Furthermore, several molecules of monomeric myosin VI, which are nonprocessive in single molecule assays, can coordinate to transport cargo with similar speeds as dimers.

PMID:
19786577
[PubMed - indexed for MEDLINE]
PMCID:
PMC2762089
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk