Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2009 Dec 29;164(4):1813-20. doi: 10.1016/j.neuroscience.2009.09.058. Epub 2009 Sep 25.

Chronic inflammation and estradiol interact through MAPK activation to affect TMJ nociceptive processing by trigeminal caudalis neurons.

Author information

  • 1Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, 18214 Moos Tower, Minneapolis, 515 Delaware Street SE, Minneapolis, MN 55455, USA.


The mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway plays a key role in mediating estrogen actions in the brain and neuronal sensitization during inflammation. Estrogen status is a risk factor in chronic temporomandibular muscle/joint (TMJ) disorders; however, the basis for this relationship is not known. The present study tested the hypothesis that estrogen status acts through the MAPK/ERK signaling pathway to alter TMJ nociceptive processing. Single TMJ-responsive neurons were recorded in laminae I-II at the spinomedullary (Vc/C(1-2)) junction in naïve ovariectomized (OvX) female rats treated for 2 days with high-dose (20 microg/day; HE2) or low-dose estradiol (2 microg/day; LE2) and after chronic inflammation of the TMJ region by complete Freund's adjuvant for 12-14 days. Intra-TMJ injection of ATP (1 mM) was used to activate Vc/C(1-2) neurons. The MAPK/ERK inhibitor (PD98059, 0.01-1 mM) was applied topically to the dorsal Vc/C(1-2) surface at the site of recording 10 min prior to each ATP stimulus. In naïve HE2 rats, low-dose PD98059 caused a maximal inhibition of ATP-evoked activity, whereas even high doses had only minor effects on units in LE2 rats. By contrast, after chronic TMJ inflammation, PD98059 produced a marked and similar dose-related inhibition of ATP-evoked activity in HE2 and LE2 rats. These results suggested that E2 status and chronic inflammation acted, at least in part, through a common MAPK/ERK-dependent signaling pathway to enhance TMJ nociceptive processing by laminae I-II neurons at the spinomedullary junction region.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk