Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2009 Oct 1;69(19):7529-37. doi: 10.1158/0008-5472.CAN-08-4382. Epub 2009 Sep 22.

Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis.

Author information

  • 1Cancer Biology Laboratory and Beijing Key Laboratory of Protein Therapeutics, Department of Biological Sciences and Biotechnology and National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, People's Republic of China.


Before metastasis, certain organs have already been influenced by primary tumors. However, the exact alterations and regulatory mechanisms of the premetastatic organs remain poorly understood. Here, we report that, in the premetastatic stage, angiopoietin 2 (Angpt2), matrix metalloproteinase (MMP) 3, and MMP10 are up-regulated in the lung by primary B16/F10 tumor, which leads to the increased permeability of pulmonary vasculatures and extravasation of circulating tumor cells. Subsequent studies show that Angpt2, MMP3, and MMP10 have a synergistic effect on disrupting vascular integrity in both in vitro and in vivo models. Lentivirus-based in vivo RNA interference of Angpt2, MMP3, and MMP10 attenuates the pulmonary vascular permeability and suppresses the infiltration of myeloid cells in the premetastatic lung. Moreover, knocking down these factors significantly inhibits the spontaneous lung metastasis in the model by orthotopic implantation of MDA-MB-231-Luc-D3H1 cells in nude mice. Further investigations reveal that the malignancy of tumor cells is positively correlated with their capabilities to induce the expression of Angpt2, MMP3, and MMP10. Luciferase reporter assay and chromatin immunoprecipitation assay also suggest that transforming growth factor-beta1 and tumor necrosis factor-alpha signaling are involved in the regulation of these premetastatic factors. Our study shows that pulmonary vascular destabilization in the premetastatic phase promotes the extravasation of tumor cells and facilitates lung metastasis, which may provide potential targets for clinical prevention of metastasis.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk