Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Bioinformatics. 2009 Sep 21;10:299. doi: 10.1186/1471-2105-10-299.

BayesPeak: Bayesian analysis of ChIP-seq data.

Author information

  • 1Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, UK. C.Spyrou@statslab.cam.ac.uk

Abstract

BACKGROUND:

High-throughput sequencing technology has become popular and widely used to study protein and DNA interactions. Chromatin immunoprecipitation, followed by sequencing of the resulting samples, produces large amounts of data that can be used to map genomic features such as transcription factor binding sites and histone modifications.

METHODS:

Our proposed statistical algorithm, BayesPeak, uses a fully Bayesian hidden Markov model to detect enriched locations in the genome. The structure accommodates the natural features of the Solexa/Illumina sequencing data and allows for overdispersion in the abundance of reads in different regions. Moreover, a control sample can be incorporated in the analysis to account for experimental and sequence biases. Markov chain Monte Carlo algorithms are applied to estimate the posterior distributions of the model parameters, and posterior probabilities are used to detect the sites of interest.

CONCLUSION:

We have presented a flexible approach for identifying peaks from ChIP-seq reads, suitable for use on both transcription factor binding and histone modification data. Our method estimates probabilities of enrichment that can be used in downstream analysis. The method is assessed using experimentally verified data and is shown to provide high-confidence calls with low false positive rates.

PMID:
19772557
[PubMed - indexed for MEDLINE]
PMCID:
PMC2760534
Free PMC Article

Images from this publication.See all images (10)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk