Format

Send to

Choose Destination
See comment in PubMed Commons below
Water Res. 2009 Dec;43(20):5087-96. doi: 10.1016/j.watres.2009.08.032. Epub 2009 Aug 28.

Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water.

Author information

  • 1Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2W2.

Abstract

The action spectra of Bacillus subtilis spores (ATCC6633) and Salmonella typhimurium LT2 were characterized using physical radiometry for irradiance measurements and a multiple target model to interpret the inactivation kinetics. The observed action spectrum of B. subtilis spores deviated significantly from the relative absorbance spectrum of the DNA purified from the spores, but matched quite well with the relative absorbance spectrum of decoated spores. The action spectrum of B. subtilis spores determined in this study was statistically different from those reported in previous studies. On the other hand, the action spectrum of S. typhimurium bacteria matched quite well with the relative absorbance spectrum of DNA extracted from vegetative cells, except in the region below 240nm. It is concluded that the common use of the relative DNA absorbance spectrum as a surrogate for the germicidal action spectrum can result in systematic errors when evaluating the performance of a polychromatic UV light reactors using bioassays. For example, if the weighted germicidal fluence (UV dose) calculated using the relative DNA absorbance spectrum as the germicidal weighting factor is found to be 40mJcm(-2) for a medium pressure lamp UV reactor, that calculated using the relative action spectrum of B. subtilis spores, as determined in this study, would be 66mJcm(-2).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk