Display Settings:


Send to:

Choose Destination
Plant Physiol. 2009 Nov;151(3):1570-81. doi: 10.1104/pp.109.141267. Epub 2009 Sep 15.

A genome-scale metabolic model of Arabidopsis and some of its properties.

Author information

  • 1School of Life Science, Oxford Brookes University, Headington, Oxford OX3 OBP, United Kingdom. mgpoolman@brookes.ac.uk


We describe the construction and analysis of a genome-scale metabolic model of Arabidopsis (Arabidopsis thaliana) primarily derived from the annotations in the Aracyc database. We used techniques based on linear programming to demonstrate the following: (1) that the model is capable of producing biomass components (amino acids, nucleotides, lipid, starch, and cellulose) in the proportions observed experimentally in a heterotrophic suspension culture; (2) that approximately only 15% of the available reactions are needed for this purpose and that the size of this network is comparable to estimates of minimal network size for other organisms; (3) that reactions may be grouped according to the changes in flux resulting from a hypothetical stimulus (in this case demand for ATP) and that this allows the identification of potential metabolic modules; and (4) that total ATP demand for growth and maintenance can be inferred and that this is consistent with previous estimates in prokaryotes and yeast.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk