Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neurotoxicology. 2009 Nov;30(6):986-95. doi: 10.1016/j.neuro.2009.08.013. Epub 2009 Sep 8.

Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation.

Author information

  • 1Tsinghua University School of Medicine, Haidian District, Beijing 100084, China.

Abstract

Beta-amyloid (Abeta) aggregation has been strongly associated with the neurodegenerative pathology and a cascade of harmful event rated to Alzheimer's disease (AD). Inhibition of Abeta assembly, destabilization of preformed Abeta aggregates and attenuation of the cytotoxicity of Abeta oligomers and fibrils could be valuable therapeutics of patients with AD. Recent studies suggested that moderate consumption of red wine and intake of dietary polyphenols, such as resveratrol, may benefit AD phenotypes in animal models and reduce the relative risk for AD clinical dementia. To understand the mechanism of this neuroprotection, we studied the effects of resveratrol, an active ingredient of polyphenols in wine and many plants, on the polymerization of Abeta42 monomer, the destabilization of Abeta42 fibril and the cell toxicity of Abeta42 in vitro using fluorescence spectroscopic analysis with thioflavin T (ThT), transmission electron microscope (TEM), circular dichroism (CD) and MTT assay. The results showed that resveratrol could dose-dependently inhibit Abeta42 fibril formation and cytotoxicity but could not prevent Abeta42 oligomerization. The studies by Western-blot, dot-blot and ELISA confirmed that the addition of resveratrol resulted in numerous Abeta42 oligomer formation. In conjunction with the concept that Abeta oligomers are linked to Abeta toxicity, we speculate that aside from potential antioxidant activities, resveratrol may directly bind to Abeta42, interfere in Abeta42 aggregation, change the Abeta42 oligomer conformation and attenuate Abeta42 oligomeric cytotoxicity.

PMID:
19744518
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk