Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Biol. 2009;10(9):R93. doi: 10.1186/gb-2009-10-9-r93. Epub 2009 Sep 10.

Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection.

Author information

  • 1Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe, 33100, Udine, Italy. nicoletta.bivi@uniud.it

Abstract

BACKGROUND:

Nitrogen-containing bisphosphonates are the elected drugs for the treatment of diseases in which excessive bone resorption occurs, for example, osteoporosis and cancer-induced bone diseases. The only known target of nitrogen-containing bisphosphonates is farnesyl pyrophosphate synthase, which ensures prenylation of prosurvival proteins, such as Ras. However, it is likely that the action of nitrogen-containing bisphosphonates involves additional unknown mechanisms. To identify novel targets of nitrogen-containing bisphosphonates, we used a genome-wide high-throughput screening in which 5,936 Saccharomyces cerevisiae heterozygote barcoded mutants were grown competitively in the presence of sub-lethal doses of three nitrogen-containing bisphosphonates (risedronate, alendronate and ibandronate). Strains carrying deletions in genes encoding potential drug targets show a variation of the intensity of their corresponding barcodes on the hybridization array over the time.

RESULTS:

With this approach, we identified novel targets of nitrogen-containing bisphosphonates, such as tubulin cofactor B and ASK/DBF4 (Activator of S-phase kinase). The up-regulation of tubulin cofactor B may explain some previously unknown effects of nitrogen-containing bisphosphonates on microtubule dynamics and organization. As nitrogen-containing bisphosphonates induce extensive DNA damage, we also document the role of DBF4 as a key player in nitrogen-containing bisphosphonate-induced cytotoxicity, thus explaining the effects on the cell-cycle.

CONCLUSIONS:

The dataset obtained from the yeast screen was validated in a mammalian system, allowing the discovery of new biological processes involved in the cellular response to nitrogen-containing bisphosphonates and opening up opportunities for development of new anticancer drugs.

PMID:
19744312
[PubMed - indexed for MEDLINE]
PMCID:
PMC2768982
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk