Format

Send to:

Choose Destination
See comment in PubMed Commons below
Health Care Manag Sci. 2009 Sep;12(3):252-68.

A data-integrated simulation model to evaluate nurse-patient assignments.

Author information

  • 1Steven L. Craig School of Business, Missouri Western State University, Saint Joseph, USA. dsundaramoorthi@missouriwestern.edu

Abstract

This research develops a novel data-integrated simulation to evaluate nurse-patient assignments (SIMNA) based on a real data set provided by a northeast Texas hospital. Tree-based models and kernel density estimation (KDE) were utilized to extract important knowledge from the data for the simulation. Classification and Regression Tree models, data mining tools for prediction and classification, were used to develop five tree structures: (a) four classification trees from which transition probabilities for nurse movements are determined, and (b) a regression tree from which the amount of time a nurse spends in a location is predicted based on factors such as the primary diagnosis of a patient and the type of nurse. Kernel density estimation is used to estimate the continuous distribution for the amount of time a nurse spends in a location. Results obtained from SIMNA to evaluate nurse-patient assignments in Medical/Surgical unit I of the northeast Texas hospital are discussed.

PMID:
19739359
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk