Send to:

Choose Destination
See comment in PubMed Commons below
Ann Acad Med Singapore. 2009 Aug;38(8):714-9.

A practical guide for multivariate analysis of dichotomous outcomes.

Author information

  • 1University of Hawaii, USA.


A dichotomous (2-category) outcome variable is often encountered in biomedical research, and Multiple Logistic Regression is often deployed for the analysis of such data. As Logistic Regression estimates the Odds Ratio (OR) as an effect measure, it is only suitable for case-control studies. For cross-sectional and time-to-event studies, the Prevalence Ratio and Cumulative Incidence Ratio can be estimated and easily interpreted. The logistic regression will produce the OR which is difficult to interpret in these studies. In this report, we reviewed 3 alternative multivariate statistical models to replace Logistic Regression for the analysis of data from cross-sectional and time-to-event studies, viz, Modified Cox Proportional Hazard Regression Model, Log-Binomial Regression Model and Poisson Regression Model incorporating the Robust Sandwich Variance. Although none of the models is without flaws, we conclude the last model is the most viable. A numeric example is given to compare the statistical results obtained from all 4 models.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Annals, Academy of Medicine, Singapore
    Loading ...
    Write to the Help Desk