Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 Nov 6;284(45):31006-17. doi: 10.1074/jbc.M109.010736. Epub 2009 Sep 3.

Ibuprofen impairs allosterically peroxynitrite isomerization by ferric human serum heme-albumin.

Author information

  • 1Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, I-00146 Roma, Italy.

Erratum in

  • J Biol Chem. 2011 Aug 19;286(33):29441.


Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO(3)(-) catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 degrees C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO(2); the values of the second order catalytic rate constant (k(on)) are 4.1 x 10(5) and 4.5 x 10(5) m(-1) s(-1), respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of k(on) (pK(a) = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO(2). The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO(2), ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 x 10(-4) and 9.7 x 10(-4) m. Under conditions where [ibuprofen] is >>L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role of HSA-heme-Fe(III) in vivo.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk