Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Adv Exp Med Biol. 2009;651:112-23.

Molecular and cellular determinants for generating ES-cell derived dopamine neurons for cell therapy.

Author information

  • 1Neuroregeneration Laboratories, Center for Neuroregeneration Research, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.

Abstract

Embryonic stem (ES) cells can generate midbrain dopaminergic (DA) neuronal phenotypes in vitro and have been successfully applied to restore function in animal models of Parkinson's disease (PD). How can we best integrate our growinginsight into the regulatory cascade of transcription factors guiding midbrain specification to further improve the in vitro differentiation of midbrain DA neurons for cell therapy of PD? To characterize the differentiation of authentic DA neurons in vitro, expression patterns of the numerous midbrain-characteristic markers need to be investigated. When using forced gene expression, such factors have to be closely monitored to avoid generation of nonphysiological cell types. Fluorescent markers such as Pitx3-GFP, TH-GFP, Sox1-GFP or surface antigens have proven useful for elimination of unwanted cell types by cell sorting, thereby averting tumors and increasing the DA fraction for transplantation studies. The importance of appropriate timing during application of extrinsic factors and the influence of cell-cell interactions in the dish has to be taken into account. This conceptual synopsis outlines current objectives, progress, but also challenges, in deriving midbrain DA neurons from pluripotent stem cells for clinical and scientific applications.

PMID:
19731556
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk