Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2009 Sep 24;113(38):10211-8. doi: 10.1021/jp905303g.

Photophysics of the pi,pi* and n,pi* states of thymine: MS-CASPT2 minimum-energy paths and CASSCF on-the-fly dynamics.

Author information

  • 1Institut de Química Computacional, Parc Científic i Tecnològic de la Universitat de Girona, Edifici Jaume Casademont, Pic de Peguera 15 (la Creueta), 17003 Girona, Spain.

Abstract

The photodynamics along the main decay paths of thymine after excitation to the lowest pi,pi* state have been studied with MS-CASPT2 calculations and semiclassical CASSCF dynamics calculations including a surface hopping algorithm. The static calculations show that there are two decay paths from the Franck-Condon structure that lead to a conical intersection with the ground state. The first path goes directly to the intersection, while the second one is indirect and involves a minimum of the pi,pi* state, a small barrier, and a crossing between the pi,pi* and n,pi* states. From the static calculations, both paths have similar slopes. The dynamics calculations along the indirect path show that, after the barrier, part of the trajectories are funneled to the intersection with the ground state, where they are efficiently quenched to the ground state. The remaining trajectories populate the n,pi* state. They are also quenched to the ground state in less than 1 ps, but the static calculations show that the decay rate of the n,pi* state is largely overestimated at the CASSCF level used for the dynamics. Overall, these results suggest that both direct and indirect paths contribute to the subpicosecond decay components found experimentally. The indirect path also provides a way for fast population of the n,pi* state, which will account for the experimental picosecond decay component.

PMID:
19722485
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk