Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Evol Biol. 2009 Aug 28;9:215. doi: 10.1186/1471-2148-9-215.

The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes.

Author information

  • 1The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, PR China. lzw.henan@163.com

Abstract

BACKGROUND:

Small heat shock proteins (sHSPs) are products of heat shock response and of other stress responses, and ubiquitous in all three domains of life, archaea, bacteria, and eukarya. They mainly function as molecular chaperones to protect proteins from being denatured in extreme conditions. Study on insect sHSPs could provide some insights into evolution of insects that have adapted to diverse niches in the world.

RESULTS:

Taking advantage of the newly assembled genome sequence, we performed a genome-wide analysis of the candidate sHSP genes in the silkworm, Bombyx mori. Based on known silkworm sHSP sequences, we identified 16 silkworm sHSP genes. Most of them are distributed on two silkworm chromosomes 5 and 27, respectively. 15 of 16 silkworm sHSPs have expression evidence. The comparative analysis of insect sHSPs from B. mori, Drosophila melanogaster, Apis mellifera, Tribolium castaneum, and Anopheles gambiae revealed that there is only one orthologous cluster whereas remaining clusters are species-specific on the phylogenetic tree. This suggested that most of sHSPs might have diverged in function across insects investigated. In addition, the data presented in this study also revealed that sHSPs in the insect orthologous cluster are highly conserved in both sequence and expression pattern. In sum, insect sHSPs show a completely different evolutionary pattern from that found in vertebrate sHSPs.

CONCLUSION:

B. mori has the largest number of insect sHSP genes characterized to date, including 16 genes. The inference that most species-specific sHSPs might have diverged in function across insects investigated will help us understand the adaptability of these insects to diverse environments.

PMID:
19715580
[PubMed - indexed for MEDLINE]
PMCID:
PMC2745388
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk