Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2009 Oct;107(4):1028-36. doi: 10.1152/japplphysiol.00293.2009. Epub 2009 Aug 27.

Sulforaphane treatment protects skeletal muscle against damage induced by exhaustive exercise in rats.

Author information

  • 1Dipartimento di Biochimica G. Moruzzi, Alma Mater Studiorum-Universit√† di Bologna, Via Irnerio, 48, Bologna 40126, Italy.

Abstract

Sulforaphane (SF), one of the most important isothiocyanates in the human diet, present in cruciferous vegetables, is known to have chemopreventive activities in different tissues. No data are available on its effects in the prevention of skeletal muscle damage. In this study, we investigated the potential protective effects of SF treatment on muscle damage and oxidative stress induced by an acute bout of exhaustive exercise in rats. Male Wistar rats were treated with SF (25 mg/kg body wt ip) for 3 days before undergoing an acute exhaustive exercise protocol in a treadmill (+7% slope and 24 m/min). Acute exercise resulted in a significant increase in plasma lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) activities. It also resulted in a significant increase in thiobarbituric acid-reactive substances, in a significant decrease in tissue total antioxidant capacity, and in a significant decrease in NAD(P)H:quinone oxidoreductase 1 (NQO1) expression and activity in vastus lateralis muscle. SF treatment significantly increased muscle NQO1, glutathione-S-transferase, and glutathione reductase expression and activity, with no effect on glutathione peroxidase and thioredoxin reductase. The observed SF-induced upregulation of phase II enzymes was accompanied by a significant increase in nuclear erythroid 2 p45-related factor 2 expression and correlated with a significant increase in total antioxidant capacity and a decrease in plasma LDH and CPK activities. Our data demonstrate that SF acts as an indirect antioxidant in skeletal muscle and could play a critical role in the modulation of the muscle redox environment, leading to the prevention of exhaustive exercise-induced muscle damage.

PMID:
19713431
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk