Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13. doi: 10.1073/pnas.0902350106. Epub 2009 Aug 13.

Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals.

Author information

  • 1Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1095, Génétique, Diversité et Ecophysiologie des Céréales, Université Blaise Pascal, 234 Avenue du Brézet, 63100 Clermont Ferrand, France. jsalse@clermont.inra.fr

Abstract

Paleogenomics seeks to reconstruct ancestral genomes from the genes of today's species. The characterization of paleo-duplications represented by 11,737 orthologs and 4,382 paralogs identified in five species belonging to three of the agronomically most important subfamilies of grasses, that is, Ehrhartoideae (rice) Panicoideae (sorghum, maize), and Pooideae (wheat, barley), permitted us to propose a model for an ancestral genome with a minimal size of 33.6 Mb structured in five proto-chromosomes containing at least 9,138 predicted proto-genes. It appears that only four major evolutionary shuffling events (alpha, beta, gamma, and delta) explain the divergence of these five cereal genomes during their evolution from a common paleo-ancestor. Comparative analysis of ancestral gene function with rice as a reference indicated that five categories of genes were preferentially modified during evolution. Furthermore, alignments between the five grass proto-chromosomes and the recently identified seven eudicot proto-chromosomes indicated that additional very active episodes of genome rearrangements and gene mobility occurred during angiosperm evolution. If one compares the pace of primate evolution of 90 million years (233 species) to 60 million years of the Poaceae (10,000 species), change in chromosome structure through speciation has accelerated significantly in plants.

PMID:
19706486
[PubMed - indexed for MEDLINE]
PMCID:
PMC2736418
Free PMC Article

Images from this publication.See all images (3)Free text

Fig. 1.
Fig. 2.
Fig. 3.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk