Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2009 Oct 23;393(2):356-68. doi: 10.1016/j.jmb.2009.08.041. Epub 2009 Aug 21.

Systematic analysis of the twin cx(9)c protein family.

Author information

  • 1University of Kaiserslautern, Germany.

Abstract

The Mia40-Erv1 disulfide relay system is of high importance for mitochondrial biogenesis. Most so far identified substrates of this machinery contain either two cysteine-x(3)-cysteine (twin Cx(3)C) or two cysteine-x(9)-cysteine (twin Cx(9)C) motifs. While the first group is composed of well-characterized components of the mitochondrial import machinery, the molecular function of twin Cx(9)C proteins still remains unclear. To systematically characterize this protein family, we performed a database search to identify the full complement of Cx(9)C proteins in yeast. Thereby, we identified 14 potential family members, which, with one exception, are conserved among plants, fungi, and animals. Among these, three represent novel proteins, which we named Cmc2 to 4 (for Cx(9)C motif-containing protein) and which we demonstrated to be dependent for import on the Mia40-Erv1 disulfide relay. By testing deletion mutants of all 14 proteins for function of the respiratory chain, we found a critical function of most of these proteins for the assembly or stability of respiratory chain complexes. Our data suggest that already early during the evolution of eukaryotic cells, a multitude of twin Cx(9)C proteins developed, which exhibit largely nonredundant roles critical for the biogenesis of enzymes of the respiratory chain in mitochondria.

PMID:
19703468
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk